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2. CUPJ~RfJ4T AND AN TICIPATED RESULTS ANTICIPATED BY THE END OF INITIAL GRANT
PERIOD

The ultimate objective of our research is to provide algorithms , and

exper imental digital computer programs which imp lement the constraint method

for three dimensional analysis, and to demonstrate the effectiveness of the

method in three dimensions. Since the approaches to be used in deriving

these algorithms are based on similar approaches for two dimensional ana-

lyses , the first part of the initial grant period was spent in completing the

formulation of algorithms in two dimensions so as to have a firm foundation

for the more complex three dimensional work. Also in response to a suggestion

by Dr. V. B. Venkayya. of the Ai~ Force Flight Dynamics Laboratory at Wright-

Patterson AFB, the plate bending element of the Constraint Method is being

developed further. The results obtained and/or anticipated for two dixnem-

sional. analysis may be subdivided into three classes:

1). Results which apply to problems requiring only c° continuity

(C° displacement fields, problems in plane elasticity)

2 ) .  Results which apply to problem s requiring both C° and C1 conti-

nuity (coupled C° and C1 displacement fields)

3). Results which apply to problems requiring only C1 continuity

(C1 displacement fields, plate bending problems)

2.1 C Displacement Fields (plan e elasticity)

It has been shown in (6, 7, 8, 91 that elemental arrays may be effi-

ciently generated through the use of “precomputed” arrays - - that is arrays
which are ccmputed once, stored on permanent file , and than reused in all

subsequent applications of the prcgram . The new work done by the principal

investigator and his collaborators has two objectives: the first is to

show how the hierarchal C elements (described in 1.2) for a quadratic functional

may be formulated using precomputed arrays thus yielding a finite element

____________________________
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technique which i. esoecially suited to problems with local raptd variation

of the function to be approximated . In particular , formulas for two-dimen-

sional (hierarchal) element arrays for arbitrary polynomial order are derived ,

based on precomputed arrays . The second objective is to apply the combined

approach of hierarchal elements and precoinputed arrays to decide if a computed

result has “converged” . A coimnon practice in f ini te  element analysis is to

solve a problem several times using ~uccessively required meshes i.e. to

apply the procedure for h—convergence . If successive analyses agree then it

is usually assumed that the f ini te element approximation is accurate. This

procedure can be computationally expensive when several highly refined meshes

are used . An alternative procedure is to use p—convergence , which , as

pointed out in 1.1, has a faster  rate of convergence to the true displacements.

The computational effectiveness of the p-convergence procedure is demonstrated

nuner ically using hierarchal elements and precomputed arrays .

Detailed formulas are given for calculation of stiffness matrices and

for calculation of polynomial coefficients from nodal variables. Hierar-

chal nodal variables are presented together with some of the favorable

consequences of using hierarchal nodal variables. Computation times for

stiffness matrices are given in terms of equivalent time units (e.t.u.) for

dif ferent  methods. In Table 1 average Central Processor unit (CPU ) times

are given for computing element stiffness matrices for several different

problem types and polynomial orders p. For comparison purposes the compu-

tation time for an eight degree of freedom isoparaznetric quadrilateral using

the general structural analysis program SAPIV of Bathe et al ( 10) has been

included in t h e  table. The time required to generate this 8*8 matr ix  is

seen to be comparable to that required for the 45 x 45 hierarchal matrix of

the torsion problem. This means that the constraint riethod allows marty more

degrees of freedom for the same computer cost.
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Var i ous num.rical examples are analysed in de ta i l .  One such example

is a Cantilever Beam with Uniform Load, which we now describe .

2.1.1 An example: Cantilever Beam with Uniform Load

It is known that in finite element problems where roundoff error is

significant , an increase in th. polynomial order may be advantageous

(Li] . This euggest.s tha t employing hierarchal elements with p—convergence

may make it possib le to us. “poorly—shaped ” elements — that is , elements

of such proportion. . as would lead to ill—conditioned equation s if low

order polynomials were used. To test this idea , we consider the plans

stress cantilever beam shown in FLg . 4, loaded with the edge stresses

d 2o~~~~
_
~~(~) , f o r O < x < L ,y _ d / 2 ,

2n0y a
0d 2v ‘a — —

~~~-—— and r — (1. — (—~ Yi, for x 0 —d/2 < y c d/2.

The beam is constra tn.d agains t rigid body notion through the boundary

conditions u — V 0 for x — y — 0, and u — 0 for x 0, y — —d/2 . The
fi ve - e i em e~tc mesh &~mp1oyed in the analysis is qhown in Fig . 4. Table 2

contatn.s the disp lacements (in inches) at point A and the potential

energy ii calcul ated for the cas. of a deep beam (L — 2.0 in., d — 1.0 in.)

with elasti c modulus of 2.8 * 106 psi , and a slender beam (L — 1.5 in.,

d — 0.1 in.) with elastic modulus of 2.8 ~ ~~ psi . Pniss ..~’s ratio was

taken as 0.3 and th. thickness as unity. The hierarchal elements exhibit.

convergent, in both cases , even though th. ratio of height to width is

1:30 for two of the elements in the mesh for the slender beam. Some

numerical difficu l ty did occur , however , when an attemp t was mad. to

- -- - —- -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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solve th e slender beam problem for  values of L — 15 in. and d — 1.0 in.

Since a sinrie scaling of these dimensions led to accurate results, it

may be that the difficulty was not due to numerical ill—conditioning,

but instead was caused by the technique used to impose the boundary

cortdi’lons — that is, the artificial stiffness coefficients introduced

on the diagonal of th. global stiffness matrix were not large enough.

For comparison purposes, Table 2 also contains values calculated

by Mason and Case (12] using a f the mesh of low order elements. Sinc.

no analytical solution exists f or the beam under the given Loading,

these authors validated their finite elemen t model by applying it to a

slightly different problem — involving the same beam, but a different

loading — for  which an analytical solution exists. The fin i t e  element

and theoretical results for the displacements were found to agree to

within 0.4~ . In the present example, the results from (12) and from

the hierarchal element solution were also found to agree to within 0.4%,

The hierarchal element results may be considered closer to the exact

values, if the good convergence of the computed values observed in Table -
~~

2 can be taken as an indicator of accuracy.

Table 3 contain s CPU times for  the equation solver for  the hierarchal.

element approach.

2.2 Coupled “ and C1 displacemnt fields

In this work the results of Kratochvil et al in (6) are generalized

to problem s with  three independent displacement f ields.  An essential aspect

of this approach is to transform a trianc~ular element T in the x-y plane

into a standard triangle T with  vertices at the origin and at a unit distance
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along the horizontal and vertical axes. Such a transformation is shown

bilow where I~ and v~ represent coordinates in the plane of the standard

triangle and * and y are local coordinates for the element with the first

vertex of the element coinciding with the origin. The other two vertices

and also the three edges are numbered in counter-clockwise order as shown.

The justification for using the standard triangle is that integrations and

mat r ix  inversions are performed with  respect to the standard triangle. Thus

Transfo~~~tion to Stan~~ rd triangle

_ _  

(OM

\

they need be done only once and the results are stored and then used in

all future applicat~.ons of the program . Computation of the element stiffness

matrix is thus reduced to computing a linear combination of a small number

of precostputed matrices followed by pre— and post-multiplication by block

diagonal matrices. The number of precomputed matrices which must be stored

are considerably reduced by choosing hierarchal nodal variable..



di~ p 1acement fi e lds  (p l at e  bending probl.~rns )

it was suggested by Dr. V. B. Venkayya (of the Analysis and Cptin%i-

zation t3roup, Structures Division , Air Force Flight Dynamics Laboratory ,

Wright-Patterson Air Force Base) in a letter dated 12 December 1975 that

further development of plate banding elements would be useful in order to

realize the fu l l  potential of the constraint method . Accordingly , a

sophisticated plate bcnding element, incorporating a complete p~~ order —
poly.iomial with p~~ 5 and corrective rational functions is now being

programmed and tested. We now describe some of this work.

It is well known (see (131, for example) that exactly conforming

(even at vertzzes) displacement fields cannot be formed merely by freely

assembling finite elements. Ther e are certain additional constraint equa—

t~cns which nust be satisfied at vertices. The sinpiest form of these

constraint eq’uat~~ ns has been given by Fearto in (141, where a specially

devised assembly procedure is presented which autzmatically enforces the

constraint equations. Alternati~ie method s for enforcing exact conformity

when using displacement fields of arbitrary polynomial order p are:

a). creat~.on of super-elements (or macro-elements) of arbitrary order

p > 5 .  in these super-elements constraints are satisfied within

each super-element leaving nodal variables on the boundary to be

freely assembled (14).

b). Use of penalty functions to enforce  constraints [14)

c). Supplementing p~Ji order polynomials with newly constructed

corrective rational functions. This destroys the analytic

character of the approximation at the vertices but permits free

assembly of elements without enforc~.ng constraints (14, 15).

—5
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The last alternative is the one which seems most promising . An algorithm

has been developed for a C1 (exactly) conforming triangular element

which contains complete polynomials of order p > 5  and rational corrective

functions. A typical element, of order p 5, together with nodal variables

is shown below.

a - b

~ b 1

~:/  ‘~~~“a 
a
2

- b
2

—~~~~ — — 
~~~ /‘ 

= a2 ~~~~~~~~~

= 
~~~~ : ~

5
3 ~~~ ~3~2 

~2~ 2

For the ~~~~~~~~ element there are 24 independent nodal variables. The

shape f~r.ct:cns for each nodal variables have been given explicitly in

[14. 15) in term s of triangular coordinates . The shape functions corres-

ponding to second order tangential-normal derivatives at the vertices are

the ratIonal functions given below; all other shape functions are poiy—

ncmia~.s. 
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to ~~~s e r v e  c hat  a l t h o uc h ra t ional  fu n ct i on s  are ~.sec.

in the  basis , a l ’. term s wh~~3h appear in the  elemental  st i f f n e ss  m at r i x

can be ~nte~ rated expLi~~ tLv w~ thout recourse to numerical quadrature.

rh~s was ~~~~ :n (16]. An a lgor i thm based on a h i er a r ch i c al  family of

C
1 element5 u~~ir.~ ri - ect~~~~e rat~ cna1 funct~ons has been progra~sned and

is now betnq tested on numer~ :31 exancles.
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In addition work is proceeding on the development of threc dimensional.

f in i t e  elements for use in the con s t r aLt  method as follows .

2.4 Nodal Variables and Shape func t ions  for a hierarchical family
of solid tetrahedronal elements

A table of basis functions for a triangular (two dimensio~~ )

hierarchical family was g iven in ( 14 1.  Thi s is now being generalized to

a table of basis functions for a tetrahedronal (three dimensional)

hierarchical family. From this new table it will. be possible to generate

shape functions for solid C° elements ~nd (if need ed ) corresponding nodal

variables.

2.5 Pi~’ers ~re~ared for oublication and ~resentation at conferences

The work described in 2.1—2.4 will be reported to the professional

cc~ nunity in the following papers to be submitted for publication in

Journals.

1). ‘Hi~ rarchal Finite Elementa and Precomputed Arrays ” , by

~!ark P . Rossow and I. Norman Katz , (to be submitted to
tnt. 3. for Nun. Method in Engr.).

2). “Nodal Variables for Conform ing  Finite Elements of Arbitrary
Polynomial Order ’, by t. Norman Katz and Mark P. RossOw , (ic
be submitted to Computers and Mathematics , with Applications).

3). “A fanily of C
1 

triangular elements containing complete poly-
nomials of arbitrary order , for application to problems in plate
bending ” , I. Norman Katz, Darna A. Szabo and Olive Liu , (in
preparation).

The following papers have been accepted for presentation at conferences.

4). Hierarchtcal Approximation in Finite Element Analysis ’, by
I. Norman Katz , International Symposium on Innovative Numerical
Analysis in Applied Eng ineering Science , Versailles , France ,
May 23 — 27, 1977.

5). “Efficient Generation of Hierarchal Finite Elements Through the
Use of Precomputed Arrays ” , by M. P. Rossow and I. N. Katz,
Second Annual ASCE Engineering Mechanics Division Specialty
Conference, North Carolina State Universit 1, Raleigh , NC
May 23 — 25, L~ 77.
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6) .  “C1 
Triangular Elements of Arbitrary Polynomial Order C o n t a in i n gCorrective Rational Functions ”, by I .  Norman Katz, SI~~4 1977National Meeting , Philadelphia , PA , June 13 — 15 , 1977.
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Table 1.

Computation Time for Element Stiffness Matrices

Problem Fields p Size of CPU Time
Type Matrices in e.t.u.

Plane stress Two displacements 5 42 x 42 2,1
(energy method)

Torsion Prandtl stress 8 45 x 45 1.3
(energy method) function

Plane stress Two displacements 3 50 x 5 0  3 ,4
(least squares) and three stresses

Plane stress Two displacements 1a 8 x 8 1.2
(energy method)
SAPIV ( 10]

Plate bending One displacement 5b 18 x 18
(energy method)
Ref . 7

a Bilinear

b Incomplete fifth order polynomial

c Matrix multiplication routine used in defining an e.t.u. was not
specified

— .— ---- -  — - -- -—“. - - -——— —‘ - - -~~~~~~~~-- —.-- — --- -—- .. “— --- - ---------~~ - --~~~ - - -  - - - - -  — — ~ ——- ——,
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Ta b le 2

Raaulta for Cantjlev.r Beam Problem

I. — 2 , d— l L 1.5 , d— .i.
p DOF V

A•IO ~.io8 VA
S 1.06

3 59 —8.68 3437 —3 .6 164721 —4 .027224 —1 .7574483

4 99 — 8.7 5 7509 —3 .622 7009 —4.033644 —1.8010797 }

5 149 —8. 760231 —3.6227 475 — 4.0336 50 —1.8010797

6 209 — 8 .76 4 954 —3.622 7711 —4.033656 —1.8010798

7 279 —8.764951 —3 .6227734

8 359 —8.765809 —3.6227 744

1152 B i l i n e a r  elements ,24~ 7 —8.7494 — — —Ref . 12

2160 Bilinear eiements 4703 — — —4.0187 — 
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Table 3

cpu Time Required to Splv. Equations
for Deep Cantilavsr Bairn Probl em

~PU Time
p is s, t , u .

3 62 20

4 102 36

5 152 56

6 212 96

7 282 174

8 362 298

_ _ _ __ _  _ _ _ _ _ _---- ---

~ 

- ~~~-~-~-—~~~~~ _ _  _ _ _ _ _ _ _ _ _  _ _________
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On September 8, 1’~~ ’, the Principal Investigator , I. Norman
Katz , jointly ~.ith ~Ltrna A. Szabo presented a semina r on their
cu r r e n t  r e su l t s  a t  t h ,~ A i r  Fo r ce  F l i g h t  Dy n a m i c s  L a b o r a t o r y ,  W r i g h t —
~‘ i t t e r sou \~~r Fo r ce  ~h ise .  The t i t l e  o t  the t~~Ik ~~~~

“Advanced Stress Analysis Technology”

An abstract o t  the talk Is cnclo~ ed w ith this report. Forty to
tL ~ tv people attended the seminar.

The principa l c on t a c t  at  W r i g h t — P a t t e r s o n  was Dr .  V . N. Ven—
k t v v .t , Aerospace ~~~ it ~e.’r , .\n t 1.vsis and Optimization Branch , Struc-
tu res ) l v i s i ’ u . e t h e r people with whom we s;~oke er ~ c : i i 1 1 v  wer e : Dr .
~~~. S . K . iu t . D r .  L.  B erke , ~ r .  D . ~~. Quinn and Mr . N.  D. W a l t  of the
Ari a v ~ i .s and ~)p i :  .t t on  ~ t u c h  ; :~ r . J • ~ a I a ~he r and Mr.  R • M . Bader
0! ~ he S t r u c t u r a l  I tt e~ r it . B r a n c h .
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with cue e~ cepr:on , all finite element soft~;are s~ stems have element

l i br ar i e s  ~n ~ n~_ ch  the  approx imat ion  p r o c e r t ie s  of e l emen : s  are  f r o z e n .

The use: controls  only the number a.nd dIstribution of f i ni t e  e l em e n t s .

The exception is an e.xperimencai . software sy s t em , developed at Wash ington

t .nive r si :y .  Th~ z syst em , called CCME —X , ~ np i L )y S  confo~~~img e l cm~ n :s

based on c o mp l e t e  pol ynomials of a r b i tr a r y  o rde r .  The e lemen t s  are h i e r a r—

ch.t.c , i.e. the stiffness matri~c of each element is embedded in the szi~ f—

ness m acr ios s of all higher order  ele~~ents  of the  same k .md. The user con—

:rols not only the number and distribution of f in i t e  e lement s  bu t  t he i r

a~ pro: inat~ on properties as well. Thus convergence can be ach ieved on

fi.’ced mesh. This provides f o r  very edficiem t and highly accurate approxi—

macion .~nd a ne~ method for co puting stress intensity factors in linear

elast ic fracture mechanics. The theoretIcal developments are outlined ,

numerIcal  exampl es are given and the concept  of an advanced self—adaptive

finite element software system is presented . 
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